The distal carboxyl-terminal domains of ADAMTS13 are required for regulation of in vivo thrombus formation.

نویسندگان

  • Fumiaki Banno
  • Anil K Chauhan
  • Koichi Kokame
  • Jin Yang
  • Shigeki Miyata
  • Denisa D Wagner
  • Toshiyuki Miyata
چکیده

ADAMTS13 is a multidomain protease that limits platelet thrombogenesis through the cleavage of von Willebrand factor (VWF). We previously identified 2 types of mouse Adamts13 gene: the 129/Sv-strain Adamts13 gene encodes the long-form ADAMTS13 having the same domains as human ADAMTS13, whereas the C57BL/6-strain Adamts13 gene encodes the short-form ADAMTS13 lacking the distal C-terminal domains. To assess the physiologic significance of the distal C-terminal domains of ADAMTS13, we generated and analyzed 129/Sv-genetic background congenic mice (Adamts13(S/S)) that carry the short-form ADAMTS13. Similar to wild-type 129/Sv mice (Adamts13(L/L)), Adamts13(S/S) did not have ultralarge VWF multimers in plasma, in contrast to 129/Sv-genetic background ADAMTS13-deficient mice (Adamts13(-/-)). However, in vitro thrombogenesis under flow at a shear rate of 5000 s(-1) was accelerated in Adamts13(S/S) compared with Adamts13(L/L). Both in vivo thrombus formation in ferric chloride-injured arterioles and thrombocytopenia induced by collagen plus epinephrine challenge were more dramatic in Adamts13(S/S) than in Adamts13(L/L) but less than in Adamts13(-/-). These results suggested that the C-terminally truncated ADAMTS13 exhibited decreased activity in the cleavage of VWF under high shear rate. Role of the C-terminal domains may become increasingly important under prothrombotic conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carboxyl terminus of ADAMTS13 directly inhibits platelet aggregation and ultra large von Willebrand factor string formation under flow in a free-thiol-dependent manner.

OBJECTIVE ADAMTS13 (A Disintegrin And Metalloprotease with Thrombospondin type 1 repeats, 13) cleaves von Willebrand factor (VWF), thereby inhibiting thrombus formation. Proteolytic cleavage relies on the amino-terminal (MDTCS) domains, but the role of the more distal carboxyl-terminal domains of ADAMTS13 is not fully understood. A previous study demonstrated the presence of multiple surface-ex...

متن کامل

The cooperative activity between the carboxyl-terminal TSP1 repeats and the CUB domains of ADAMTS13 is crucial for recognition of von Willebrand factor under flow.

ADAMTS13 cleaves von Willebrand factor (VWF) between Tyr(1605) and Met(1606) residues at the central A2 subunit. The amino-terminus of ADAMTS13 protease appears to be sufficient to bind and cleave VWF under static and denatured condition. However, the role of the carboxyl-terminus of ADAMTS13 in substrate recognition remains controversial. Present study demonstrates that ADAMTS13 cleaves VWF in...

متن کامل

Allosteric activation of ADAMTS13 by von Willebrand factor.

The metalloprotease ADAMTS13 cleaves von Willebrand factor (VWF) within endovascular platelet aggregates, and ADAMTS13 deficiency causes fatal microvascular thrombosis. The proximal metalloprotease (M), disintegrin-like (D), thrombospondin-1 (T), Cys-rich (C), and spacer (S) domains of ADAMTS13 recognize a cryptic site in VWF that is exposed by tensile force. Another seven T and two complement ...

متن کامل

Essential domains of a disintegrin and metalloprotease with thrombospondin type 1 repeats-13 metalloprotease required for modulation of arterial thrombosis.

OBJECTIVE A disintegrin and metalloprotease with thrombospondin type 1 repeats-13 (ADAMTS13) inhibits platelet aggregation and arterial thrombosis by cleavage of von Willebrand factor. However, the structural components of ADAMTS13 required for inhibition of arterial thrombosis are not fully defined. METHODS AND RESULTS Using recombinant proteins and a murine model, we demonstrated that an AD...

متن کامل

Application of FITC for detecting the binding of antiangiogenic peptide to HUVECs

Angiogenesis is the generation of new blood vessels from the existing vasculature. The angiogenic programme requires the degradation of the basement membrane, endothelial cell migration and invasion of the extracellular matrix, with endothelial cell proliferation and capillary lumen formation before maturation and stabilization of the new vasculature. Angiogenesis is dependent on a delicate equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 113 21  شماره 

صفحات  -

تاریخ انتشار 2009